In the following paragraphs, we will provide a brief overview and illustration of each of the Internet of Things communication techniques, their pros and cons, and their smartphone compatibilities.
Satellite communications enable cell phone communication from a phone to the next antenna of about 10 to 15 miles. They are called GSM, GPRS, CDMA, GPRS, 2G / GSM, 3G, 4G / LTE, EDGE, and others based on connectivity speed.
In the Internet of Things language, this form of communication is mostly referred to as “M2M” (Machine-to-Machine) because it allows devices such as a phone to send and receive data through the cell network.
Pros:
Cons:
Examples of satellite connectivity would include utility meters that send data to a remote server, commercials updated on digital billboards, or cars via Internet connectivity.
Satellite is useful for communication that utilizes low data volumes, mainly for industrial purposes but in the changing near future where the cost of satellite communication is gradually falling, the use of satellite technology might become much more viable and interesting for consumers.
WiFi is a wireless local area network (WLAN) that utilizes the IEEE 802.11 standard through 2.4GhZ UHF and 5GhZ ISM frequencies. WiFi provides Internet access to devices that are within the range (about 66 feet from the access point).
Pros:
Cons:
An example of WiFi connectivity would be Dropcam streaming live video via the local WiFi instead of streaming through a connected Ethernet LAN cable. WiFi is useful for many Internet of Things connections but such connections typically connect to an external cloud-server and are not directly connected to the smartphone. It is also not recommended for battery-powered devices due to its relatively high power consumption.
Radio frequency communications are probably the easiest form of communication between devices. Protocols like ZigBee or ZWave use a low-power RF radio embedded or retrofitted into electronic devices and systems.
Z-Wave’s range is approximately 100 ft (30 m). The radio frequency band used is specific to its country. For example, Europe has an 868.42 MHz SRD Band, a 900 MHz ISM or 908.42 MHz band (United States), a 916 MHz in Israel, 919.82 MHz in Hong Kong, 921.42 MHz in the regions of Australia/New Zealand) and 865.2 Mhz in India.
ZigBee is based on the IEEE 802.15.4 standard. However, its low power consumption limits transmission distances to a range of 10 to 100 meters.
Pros:
Cons:
An example of radio frequency connectivity would be your typical television remote for it uses radio frequency, which enables you to switch channels remotely. Other examples include wireless light switches, electrical meters with in-home displays, traffic management systems, and other consumer and industrial equipment that requires short-range low-rate wireless data transfer.
Radio frequency communication protocol is useful for large deployments such as hotels where a high quantity of devices are required to be centrally and locally managed. However, in the near future, the technology might become increasingly outdated and be replaced by Bluetooth mesh networks.
Radio frequency identification (RFID) is the wireless use of electromagnetic fields to identify objects. Usually, you would install an active reader, or reading tags that contain a stored information mostly authentication replies. Experts call that an Active Reader Passive Tag (ARPT) system. Short-range RFID is about 10cm, but long-range can go up to 200m. What many do not know is that Léon Theremin invented the RFID as an espionage tool for the Soviet Union in 1945.
An Active Reader Active Tag (ARAT) system uses active tags awoken with an interrogator signal from the active reader. Bands RFID runs on: 120–150 kHz (10cm), 3.56 MHz (10cm-1m), 433 MHz (1-100m), 865-868 MHz (Europe), 902-928 MHz (North America) (1-12m).
Pros:
Cons:
Examples include animal identification, factory data collection, road tolls, and building access. An RFID tag is also attached to an inventory such that its production and manufacturing progress can be tracked through the assembly line. As an illustration, pharmaceuticals can be tracked through warehouses. We believe RFID technology will very soon be replaced by near-field communication (NFC) technology in smartphones.
Bluetooth is a wireless technology standard for exchanging data over short distances (using short-wavelength UHF radio waves in the ISM band from 2.4 to 2.485 GHz). If you look at the frequencies it is actually the same as WiFi such that these two technologies seem very similar. However, they have different uses. The 3 different styles of Bluetooth technology that are commonly talked about are:
Bluetooth exists in many products, such as telephones, tablets, media players, robotics systems. The technology is extremely useful when transferring information between two or more devices that are near each other in low-bandwidth situations. Bluetooth is commonly used to transfer sound data with telephones (i.e., with a Bluetooth headset) or byte data with hand-held computers (transferring files). Bluetooth protocols simplify the discovery and setup of services between devices. Bluetooth devices can advertise all of the services they provide. This makes using services easier because relative to other communication protocols, it enables greater automation such as security, the network address, and permission configuration.
Wi-Fi and Bluetooth are to some extent complementary in their applications and usage.
Any Bluetooth device in discoverable mode transmits the following information on-demand:
Pros:
Cons:
Bluetooth technology mainly finds applications in the healthcare, fitness, beacons, security, and home entertainment industries.
Bluetooth technology is definitely the hottest technology right now but it is many times overrated or misunderstood in functionality. If the application goes beyond fun you will have to dig deep in configuration and different settings as different phones react differently to Bluetooth.
Near-field communication uses electromagnetic induction between two loop antennas located within each other’s near field, effectively forming an air-core transformer. It operates within the globally available and unlicensed radio frequency ISM band of 13.56 MHz on ISO/IEC 18000-3 air interface and at rates ranging from 106 kbit/s to 424 kbit/s. NFC involves an initiator and a target; the initiator actively generates an RF field that can power a passive target (an unpowered chip called a “tag”). This enables NFC targets to take very simple form factors such as tags, stickers, key fobs, or battery-less cards. NFC peer-to-peer communication is possible provided both devices are powered.
There are two modes:
Pros:
Cons: